

Selection of bacteria with antagonistic activity against Ascochyta blight of chickpea

AZZA RHAIEM*¹²

¹ Laboratory of Microorganisms, National Gene Bank (Banque Nationale de Gènes), Boulevard of the leader Yasser Arafat, ZI Charguia-1, 1080 Tunis, Tunisia;

² University of Carthage, Institut National de la Recherche Agronomique de Tunisie (INRAT), Laboratory of Plant Protection (LR111NRAT04), Rue Hédi Karray, 1004, Menzah 1, Tunis, Tunisia

*Corresponding author: azza_rh@yahoo.fr

Abstract - Seventy-eight bacteria belonging to the genus *Bacillus*, isolated from salty soils in Tunisia, were assessed for their antagonistic activity against *Ascochyta rabiei*, the causal agent of Ascochyta blight of chickpea. Effect of treatments with the different bacteria on disease severity and plant growth parameters was evaluated under greenhouse conditions. Based on Mass Disease Index (MDI), tested bacteria were classified into four groups. Bacteria of the first group were able to significantly reduce disease severity as compared to the control inoculated by *A. rabiei*, and showed relatively better efficiency than fungicides included in the assay. Results revealed that the different treatments had a significant effect on disease and growth parameters, 38 bacteria of the genus *Bacillus* among 78 could be selected from this experiment, of which one strain of *B. sphaericus*, two strains of *B. cereus*, four strains of *B. thuringiensis* and thirty-one strains of *Bacillus* spp. The efficiency of the 11 selected bacteria belonging to the first group was also performed.

Keywords: Bacillus, Ascochyta blight, Mass Disease Index, antagonistic activity

1. Introduction

Chickpea (Cicer arietinum L.) is one of the most important legume crops in the world and is mainly grown for its edible seeds highly rich in proteins (Yadav et al 2011; Zaim et al 2013). Ascochyta blight of chickpea caused by Ascochyta rabiei (Pass.) Labrousse (teleomorph = Didymella rabiei (Kovachevski)) is considered to be one of the most devastating diseases for this crop, particularly in Tunisia. The fungus attacks all above ground parts of the host and can induce necrotic spots on leaves, stems and pods (Benzohra et al 2011; Kaiser et al 2000). Population biology studies revealed high genetic diversity among the populations of Ascochya rabiei from different locations in Tunisia (Rhaiem et al 2008) and the occurrence of both mating types as well (Rhaiem et al 2007). In addition, epidemiological studies revealed that weather conditions prevailing in different Tunisian locations are conductive to the development and production of ascospores of the sexual stage Didymella rabiei (Rhaiem and Cherif 2014); which is likely to enhance genotypic diversity of the pathogen and make screening for resistance a very difficult task. In this context, several research programs aiming to find resistant chickpea lines in many regions all over the world did not give stable levels of resistance to A. rabiei. Different control strategies including farming methods, resistant genotypes and chemical treatments had limited efficiency in decreasing the damage caused by the disease (Benzohra et al 2011; Hawtin and Singh 1984). Attempts for finding fungal species potentially useful for biological control against the pathogen revealed the ability of some antagonistic fungi like Trichoderma harzianum or T. viridae in reducing or inhibiting the growth of the pathogen in vitro and/or in vivo (Benzohra et al 2011; Dugan et al 2009; Dugan et al 2005; Khalil et al 1989; Küçük et al 2007; Rajakumar et al 2005). Biocontrol potential of bacteria belonging to the genera Bacillus and Pseudomonas was evaluated against several plant pathogens causing plant diseases on different hosts including Fusarium wilt and dry root rot of chickpea (Karimi et al 2012; Patil et al 2014; Zaim et al 2013). The objectives of these studies are: i. to assess the eventual efficiency of some bacteria belonging to the genus Bacillus as biocontrol agents against Ascochyta blight of chickpea; ii. to evaluate their ability in reducing disease severity under laboratory and field conditions; and iii to determine their effect on plant growth parameters.

2. Material and Methods

Seventy-eight bacteria belonging to the genus *Bacillus*, isolated from salty soils in Tunisia, were considered (Table 1).

Table 1. Designation	and origin of had	steria tested for their	antagonistic activity	against Δ rahiai
Table I. Designation	and origin of bay		antagoinstic activity	agamst A. Tubiei

Tab			cteria tested for their	antag		-	
	Bacteria	Genus	Origin		Bacteria	Genus	Origin
1	B1 (A3)	Bacillus spp.	Gabes (oasis soil)	51	B58 (X23)	Bacillus spp.	Chott-El-Jerid
2	B2 (A7)	Bacillus spp.	Gabes (oasis soil)	52	B59 (H1)	Bacillus spp.	Tamarza
3	B3 (C17)	B. sphaericus	Gabes (oasis soil)	53	B60 (H2)	Bacillus spp.	Tamarza
4	B4 (E2)	Bacillus spp.	Deggache	54	B61 (H5)	Bacillus spp.	Tamarza
5	B5 (E4)	Bacillus spp.	Deggache	55	B62 (H6)	Bacillus spp.	Tamarza
6	B6 (E6)	Bacillus spp.	Deggache	56	B63 (H7)	Bacillus spp.	Tamarza
7	B7 (G1)	Bacillus spp.	Chott-Er-Rahim	57	B64 (H8)	Bacillus spp.	Tamarza
8	B8 (G2)	Bacillus spp.	Chott-Er-Rahim	58	B65 (H9)	Bacillus spp.	Tamarza
9	B9 (G4)	Bacillus spp.	Chott-Er-Rahim	59	B66 (H97)	Bacillus spp.	Tamarza
10	B10 (G5)	Bacillus spp.	Chott-Er-Rahim	60	B67 (HH7)	Bacillus spp.	
11	B11 (G6)	Bacillus spp.	Chott-Er-Rahim	61	B68 (HH13)	Bacillus spp.	
12	B12 (G7)	Bacillus cereus	Chott-Er-Rahim	62	B69 (HH15)	Bacillus spp.	
13	B13 (G10)	Bacillus spp.	Chott-Er-Rahim	63	B70 (HH16)	Bacillus spp.	
14	B14 (G12)	Bacillus spp.	Chott-Er-Rahim	64	B71 (HH24)	Bacillus spp.	
15	B15 (G31)	Bacillus spp.	Chott-Er-Rahim	65	B72 (HH32)	Bacillus spp.	
16	B16 (I2)	Bacillus spp.	Foum El Khanga	66	B73 (HH35)	Bacillus spp.	
17	B17 (I3)	Bacillus spp.	Foum El Khanga	67	B74 (HH36)	Bacillus spp.	
18	B18 (I4)	Bacillus spp.	Foum El Khanga	68	B75 (HH44)	Bacillus spp.	
19	B19 (I6)	Bacillus spp.	Foum El Khanga	69	B76 (HH45)	Bacillus spp.	
20	B20 (I8)	Bacillus spp.	Foum El Khanga	70	B77 (HH51)	Bacillus spp.	
21	B21 (I10)	Bacillus spp.	Foum El Khanga	71	B78 (HH54)	Bacillus spp.	
22	B22 (I12)	Bacillus spp.	Foum El Khanga	72	B79 (HH71)	Bacillus spp.	
23	B24 (I17)	Bacillus spp.	Foum El Khanga	73	B80 (HH77)	Bacillus spp.	
24	B25 (I18)	Bacillus spp.	Foum El Khanga	74	B81 (HH81)	Bacillus spp.	
25	B26 (I20)	Bacillus spp.	Foum El Khanga	75	B82 (HH91)	Bacillus spp.	
26	B28 (I25)	Bacillus spp.	Foum El Khanga	76	B83 (HH112)	Bacillus spp.	
27	B29 (I27)	Bacillus spp.	Foum El Khanga	77	B84 (HH115)	Bacillus spp.	
28	B30 (I31)	Bacillus spp.	Foum El Khanga	78	B85 (HH118)	Bacillus spp.	
29	B32 (I34)	Bacillus spp.	Foum El Khanga				
30	B33 (I35)	Bacillus spp.	Foum El Khanga				
31	B34 (K7)	Bacillus spp.	Oueslatia (forest				
			soil)				
32	B36 (K9)	Bacillus spp.	Oueslatia				
33	B38 (1T)	B. thuringiensis	FST*				
34	B39 (10 T)	B. thuringiensis	FST				
35	B40 (14 T)	B. thuringiensis	FST				
36	B41 (33T)	B. thuringiensis	FST				
37	B42 (55T)	B. thuringiensis	FST				
38	B43 (X2)	Bacillus spp.	Chott-El-Jerid				
39	B44 (X4)	Bacillus spp.	Chott-El-Jerid				
40	B45 (X5)	Bacillus spp.	Chott-El-Jerid				
41	B46 (X7)	B. lentimorbus	Chott-El-Jerid				
42	B47 (X8)	Bacillus spp.	Chott-El-Jerid				
43	B48 (X9)	B. cereus	Chott-El-Jerid				
44	B49 (X10)	Bacillus spp.	Chott-El-Jerid				
45	B50 (X12)	Bacillus spp.	Chott-El-Jerid				
46	B52 (X16)	B. cereus	Chott-El-Jerid				
47	B54 (X18)	Bacillus spp.	Chott-El-Jerid				
48	B55 (X19)	Bacillus spp.	Chott-El-Jerid				
49	B56 (X21)	Bacillus spp.	Chott-El-Jerid				
50	B57 (X22)	Bacillus spp.	Chott-El-Jerid				
* Eac	sulty of Science	e of Tunie					

* Faculty of Sciences of Tunis

Seeds of the chickpea cultivar Amdoun1, susceptible to Ascochyta blight, were surface disinfected in 2% NaOCl for 3 min, washed three times in sterile distilled water and dried for 6 hours under a stream of filtered air. Volumes of 1.5 ml of each bacterial cell suspension were mixed with 100.g of chickpea seeds in Erlenmeyer flasks. Mixtures were rotatory shaken until total absorption of the suspensions by the seeds, which were then dried under a stream of filtered air. Seeds of inoculated and non-inoculated controls were surface disinfected only. *Bacillus* inocula used to treat seeds were prepared from liquid cultures at 10⁷-10⁸ CFU/ml obtained after incubation at 37°C for 24-48 hours. Seeds were sown in plastic pots 17 cm in diameter, filled with sterilized peat previously treated with 3% Formol. Treatments with fungicides were performed similarly to the method used for the bacteria by mixing

1.5 ml of Chlorothalonyl (2 g/l), Quadris (Azoxystrobin) (1 g/l) or Stroby (kresoxim-methyl) (0.2 g/l) solutions with 10g of chickpea seeds and by agitating until total absorption. Three replicated pots, with 8 plants/pot and per treatment were adopted. Treatments with bacteria and fungicides were repeated twice at one-week intervals on small seedlings, presenting two-three expanded leaves, by spraying bacteria suspensions and fungicides with the same respective concentrations used previously. Plants were inoculated by the pathogen at the seedling stage (five-seven expanded leaves), and again after 14 days, by spraying a 5×10^5 conidia/ml suspension from a single-spored isolate of *A. rabiei*, previously shown to be pathogenic, using an airbrush sprayer. Plants were incubated in the greenhouse at saturated humidity and a temperature of $20\pm2^{\circ}$ C. Disease severity was recorded 8 and 21 days after inoculation based on a 1-9 scale, and mass disease indexes (MDI) were calculated according to the following formula:

 $MDI = \sum_{i=1}^{9} (n_i \times i) / (Nx9) \times 100$

With i: the level of infection according to the 1-9 scale

n_i: the number of plants having i as level of infection

N: the total number of plants/pot (replication)

Effects of the different bacteria and fungicides treatments on plant growth parameters were also evaluated.

Re-assessment of antagonistic activity for selected bacteria

Selected bacteria were again assessed under greenhouse controlled conditions and in the field on chickpea cultivars Amdoun1 and Chetoui (data not shown). *In vitro* testing was also performed for representative bacteria to determine their ability to inhibit pathogen growth (data not shown).

3. Results

Statistical analysis revealed a significant effect of the different treatments on disease severity (Table 2) as well as on plant growth parameters, particularly on plant length (Tables 3, 4) and plant weight (Tables 5, 6, 7).

Table 2. ANOVA of the effect of the different treatments on the mass disease index (MDI) determined 21 days after inoculation

moculation	Df	MS		F		р			
MDI		82	665.419***		4.339	0.000			
Residue		166	153.363						
Table 3. ANOVA of the effect of the different treatments on plant length determined 21 days after sowing									
	Dl	MS		F	р				
Length 2		81	6.122***		3.205	0.000			
Residue		164	1.909						
Table 4. ANOVA of t	he effect of the differ	rent treatments on	plant length de	etermined at harve	esting				
	Dl	MS		F	р				
Final length		82	65.892***		2.576	0.000			
Residue		166	25.576						
Table 5. ANOVA of t	he effect of the differ	ent treatments on	total plant wei	ght					
	dl	MS		F	р				
Total weight/plant		82	0.159***		3.385	0.000			
Residue		166	0.047						
Table 6. ANOVA of t	he effect of the differ	ent treatments on	aboveground p	part weight per pla	ant				
	dl	MS		F	р				
Above-ground part		82	0.142***		3.171	0.000			
weight/plant Residue		166	0.045						
Table 7. ANOVA of t	he effect of the differ			nart weight ner nl	ant				
	ne chiect of the differ	ent treatments on	under-ground	part weight per pi	ant				
	dl	MS		F	р				
underground part	8	32.000	0.003***		1.703	0.002			
weight/plant									
Residue		6.000	0.001	11 0 0					
A significant effect									
Table 8. ANOVA of	the effect of the diffe	erent treatments of	on the percenta	ge of seeds germ	nation determine	d 10 days after			
sowing	Dl	MS		F	n				
Seeds Germination		81	356.616***		р 3.694	0.000			
					5.074	0.000			
Residue	1	164	96.545	C 1					
Table 9. ANOVA of the effect of the different treatments on the percentage of seeds germination determined 14 days after									

RHAIEM (2020) / Journal of new sciences, Agriculture and Biotechnology, 76(3), 4461-4472

sowing					
	Dl	MS	F	р	
Seeds Germination		81	539.456***	1.905	0.000
Residue		164	283.131		

Effect of the different treatments on disease severity

According to the mass disease index (MDI) recorded 21 days after the second inoculation by *A. rabiei*, bacterial strains evaluated for their antagonistic activity were classified into four groups (Table 10).

Table 10. Classification of the different treatments according to the values of the mass disease index recorded 21 days after inoculation.

	Treatments	MDI			Treatments	MDI	
Group 1	Control	0.000	a	Group 2	B68	37.037	bcdefghijklmno
	B58	19.775	ab		B22	37.449	bcdefghijklmno
	B28	20.238	bc		B5	38.955	bcdefghijklmno
	B71	20.503	bc		B17	39.153	bcdefghijklmno
	B3	21.032	bcd		B84	39.286	bcdefghijklmno
	B72	21.204	bcd		B15	39.552	bcdefghijklmno
	B2	21.296	bcd		B29	39.722	bcdefghijklmno
	B54	23.986	bcde		B21	40.204	cdefghijklmno
	B7	24.074	bcde		B32	40.212	cdefghijklmno
	B1	24.537	bcdef		B18	40.741	defghijklmno
	B4	24.537	bcdef		B65	40.792	defghijklmno
	B9	25.176	bcdefg		B16	41.564	efghijklmno
Group 2	B83	25.573	bcdefgh		B20	41.693	efghijklmno
1	B10	26.477	bcdefghi		B43	42.152	efghijklmnop
	B12	29.171	bcdefghij		B70	42.752	efghijklmnop
	Stroby	30.489	bcdefghijk		B42	42.948	efghijklmnop
	B11	30.617	bcdefghijk		B13	43.261	efghijklmnop
	B82	30.923	bcdefghijk		B69	43.937	efghijklmnop
	B33	31.173	bcdefghijkl		B81	44.444	fghijklmnop
	B38	32.562	bcdefghijklm		B14	44.782	fghijklmnop
	B19	32.738	bcdefghijklm		B41	45.370	ghijklmnopq
	B85	32.937	bcdefghijklm		Inoculated control	45.569	hijklmnopq
	B25	33.399	bcdefghijklm	Group 3	B45	46.142	hijklmnopq
	Chlorothalonyl	33.466	bcdefghijklm		B64	46.759	ijklmnopq
	B26	33.466	bcdefghijklm		B62	47.901	ijklmnopq
	B40	33.598	bcdefghijklm		B48	48.479	ijklmnopq
	Quadris	33.730	bcdefghijklmn		B66	48.479	ijklmnopq
	B52	33.796	bcdefghijklmn		B63	48.611	ijklmnopq
	B57	33.796	bcdefghijklmn		B73	50.419	jklmnopqr
	B55	33.862	bcdefghijklmn		B61	50.970	klmnopqr
	B34	34.392	bcdefghijklmn		B46	52.491	lmnopqrs
	B36	34.392	bcdefghijklmn		B39	53.638	mnopqrs
	B59	34.458	bcdefghijklmn		B74	55.556	nopqrs
	B60		bcdefghijklmn		B44	56.019	opqrs
	B6	34.722	bcdefghijklmn		B47	61.706	
	B50	34.722	bcdefghijklmn		B78	61.799	pqrst
	B56	34.810	bcdefghijklmn		B75	65.123	qrst
	B49	35.251	bcdefghijklmn	Group 4	B80	68.695	rst
	B67	36.111	bcdefghijklmno		B76	71.296	st
	B8	36.265	bcdefghijklmno		B77	77.425	t
	B24	36.348	bcdefghijklmno		B79	79.171	
	B30	36.574	bcdefghijklmno		_ / /		

NB: LSD 0.05: values followed by the same letter are not significantly different at 5%.

Bacteria belonging to group 1, which includes B58, B28, B71, B72, B2, B54, B7, B1, B4, B9 of *Bacillus* spp. and B3 of *B. sphaericus*, were the most efficient in reducing disease severity. Mass

disease indexes recorded on plants inoculated with these bacteria ranged approximately between 19 and 25% and were significantly lower than that of the control inoculated by *A. rabiei*, which was about 45.5%. Plants inoculated with bacteria belonging to group 2 presented mass disease indexes that were not significantly different from that of the inoculated control but that were relatively lower than it, ranging between 25.5 and 45.37%. Bacteria of this group presented an efficiency to reduce disease severity similar to that of the three tested fungicides Stroby, Quadris and Chlorothalonyl. Plants inoculated with bacteria of the third group presented levels of infection higher than those of the second group (MDI ranged between 46 and 65%) but presented mass disease indexes that were not significantly different from that of the inoculated control. Strains of *Bacillus* spp. B80, B76, B77 and B79, which constitute the fourth group, were significantly unable to reduce disease severity as compared to the control; mass disease indexes were, for the latter, comprised between 68 and 79% (Figure 1).

Figure 1. Effect of the different treatments with bacteria belonging to Groups 1, 2, 3 and 4 on chickpea plants inoculated with *A. rabiei* and kept under greenhouse conditions: **A.** Non-inoculated control; **B.** Bacteria belonging to Group 1 (MDI=19-25 %); **C.** Bacteria belonging to Group 2 (25.5-45.37 %); **D.** Bacteria belonging to Group 3 (MDI=46-65 %); Bacteria belonging to Group 4 (MDI=68-79 %).

Effect of treatments on growth parameters

Plants inoculated with strains B21 (I10), B56 (X21), B54 (X18), B18 (I4), B64 (H8) of *Bacillus* spp. and B42 (55T) of B. thuringiensis presented the highest values of length as well as the non-inoculated control and the Chlorothalonyl, which were significantly higher than that of the inoculated control (Table 12). The highest values of weight were obtained for plants inoculated with strains B19, B28, B9, B58, B43, B73, B50, B85, B83, B84, B54, B44, B49, B56 of Bacillus spp., B40 (14T) of B. thuringiensis and B48 (X9) of B. cereus. Nevertheless, it is important to notice that the significant effect of the different treatments on plant weight seems to be essentially represented by the aboveground parts weight. In fact, although the inoculation with some bacteria allowed us to obtain plants with significantly higher roots weight than with others, there is no significant difference regarding the underground-parts weight between the inoculated and non-inoculated controls. It is also important to notice that plants inoculated with strain B42 (55T) of B. thuringiensis were also significantly longer than the non-inoculated control since the beginning of the experiment. Plants inoculated with strains B39 (10T), B40 (14T), B41 (33T), B48 (X9), B52 (X16) of *B. cereus*, and B81, B16, B82, B19, B22, B55, B56, B85, B8, B49, B47, B17 of *Bacillus* spp. were relatively longer than the control before inoculation by A. rabiei. Based on disease (Table 10) and growth parameters (Tables 11-14), 38 bacteria of the genus Bacillus among which one strain of B. sphaericus, two strains of B. cereus, four strains of B. thuringiensis and thirty-one strains of Bacillus sp. could be selected from this experiment (Table 15). Strains B40 (14T), 41 (33T), B42 (55T) of B. thuringiensis, B22, B47, B57, B55 of Bacillus spp., and B52 (X16) of B. cereus presented the most favorable effect on plant growth parameters and an acceptable level of reduction of disease severity and deserve to be particularly considered. The three tested fungicides were able to reduce disease severity as compared to the inoculated control, although these treatments were less efficient than bacteria classified in the first group. Plants treated with Quadris and Chlorothalonyl presented better growth features than those treated with Stroby.

Table 11. Classification of the different treatments according to the percentage of seeds germination recorded 14 days after sowing

sowing						
Treatments	% Germin		Treatments	% Germi		
B66	41.666		B28	83.333	defg	
B43	45.833	ab	B26	83.333	defg	
B83	54.1666	abc	B81	83.333	defg	
B9	54.1666	abc	B10	83.333	defg	
B11	54.1666	abc	B7	83.333	defg	
B12	56.250	abcd	B21	83.333	defg	
B29	58.333	abcd	B64	83.333	defg	
B44	58.3333	abcd	B56	83.333	defg	
B62	58.333	abcd	B71	83.333	defg	
B68	62.500	abcde	B20	83.333	defg	
B61	62.500	abcde	B18	83.333	defg	
B65	62.500	abcde	B16	83.333	defg	
B13	62.500	abcde	B75	83.333	defg	
B58	62.500	abcde	Stroby	87.500	efg	
Chlorothalonyl	70.833	bcdef	B32	87.500	efg	
B6	70.833	bcdef	B5	87.500	efg	
B72	70.833	bcdef	B25	87.500	efg	
B59	70.833	bcdef	B38	87.500	efg	
B2	70.833	bcdef	B39	87.500	efg	
B54	70.833	bcdef	B76	87.500	efg	
Control	72.0179	bcdef	B74	87.500	efg	
B3	75.000	cdefg	B85	91.666	fg	
B19	75.000	cdefg	B45	91.666	fg	
B1	75.000	cdefg	B8	91.666	fg	
B67	75.000	cdefg	B82	91.666	fg	
B60	75.000	cdefg	B34	91.666	fg	
B70	75.000	cdefg	B17	91.666	fg	
B46	75.000	cdefg	B14	91.666	fg	
Quadris	75.000	cdefg	B77	91.666	fg	
B79	75.000	cdefg	B78	91.666	fg	
B84	75.000	cdefg	B24	91.666	fg	
B36	75.000	cdefg	B48	91.666	fg	
B73	75.000	cdefg	B49	95.833	fg	
B15	77.083	cdefg	B40	100	g	
B80	79.166	cdefg	B41	100	g	
B4	79.166	cdefg	B42	100	g	
B69	79.166	cdefg	B22	100	g	
B50	79.166	cdefg	B47	100	g	
B63	79.166	cdefg	B57	100	g	
B33	83.333	defg	B55	100	g	
B30	83.333	defg	B52	100	g	

NB: LSD $_{0.05}$: values followed by the same letter are not significantly different at 5%.

Table 12. Classification of	f the different	treatments accordin	g to the values of plant ler	igth recorded at har	vesting
Treatments	Plant lei	ngth	Treatments	Plant leng	gth
B79	28.899	a	B41	40.166	defghijklmnopqrstu
B65	31.333	ab	B84	40.333	defghijklmnopqrstu
B69	31.500	ab	B14	40.4333	defghijklmnopqrstu
B36	31.666	abc	B39	40.666	efghijklmnopqrstu
B7	31.750	abc	B75	40.666	efghijklmnopqrstu
B67	32.500	abcd	B72	40.833	fghijklmnopqrstu
B71	32.666	abcde	B74	40.833	fghijklmnopqrstu
B9	32.866	abcdef	B78	41.500	ghijklmnopqrstu
B4	33.166	abcdef	B76	41.533	ghijklmnopqrstu
B70	34.000	abcdefg	B16	42.033	ghijklmnopqrstu
B77	34.166	abcdefgh	Stroby	42.186	hijklmnopqrstu
B3	34.333	abcdefghi	B49	42.233	hijklmnopqrstu
B6	34.500	abcdefghij	B47	42.266	hijklmnopqrstu
B11	35.133	abcefghijk	В5	42.333	ijklmnopqrstu
B58	35.266	abcefghijk	B40	42.333	ijklmnopqrstu
B20	35.299	abcefghijk	B62	42.333	ijklmnopqrstu
B15	35.333	abcefghijk	B30	42.533	jklmnopqrstu
B12	35.733	abcefghijkl	B83	42.833	klmnopqrstu
B60	35.933	abcdefghijklm	B48	43.000	klmnopqrstu
B1	36.000	abcdefghijklmn	B32	43.000	klmnopqrstu
B66	36.400	abcdefghijklmno	B82	43.000	klmnopqrstu
B59	36.466	abcdefghijklmno	B57	43.666	lmnopqrstu
B13	36.633	abcdefghijklmno	B81	43.700	lmnopqrstu
B25	37.000	abcdefghijklmnop	B68	43.849	lmnopqrstu
B80	37.000	abcdefghijklmnop	B63	44.000	mnopqrstu
B46	37.000	abcdefghijklmnop	B44	44.099	nopqrstu
B8	37.000	abcdefghijklmnop	B85	44.233	opqrstuv
B33	37.333	bcdefghijklmnopq	B55	44.266	opqrstuv
Inoculated control	37.500	bcdefghijklmnopq	B26	44.333	opqrstuv
B52	37.523	bcdefghijklmnopq	B29	44.333	opqrstuv
B28	37.633	bcdefghijklmnopq	B73	44.900	pqrstuv
B10	37.666	bcdefghijklmnopq	B50	45.213	qrstuv
B17	38.166	bcdefghijklmnopqr	B21	46.000	rstuv
B22	38.366	bcdefghijklmnopqrs	B56	46.333	stuv
B19	38.466	bcdefghijklmnopqrs	B54	46.333	stuv
B24	38.566	bcdefghijklmnopqrs	Quadris	46.466	stuv
B45	38.666	bcdefghijklmnopqrs	B18	47.000	tuv
B38	39.000	cdefghijklmnopqrst	B42	47.000	tuv
B61	39.666	cdefghijklmnopqrstu	Control	47.133	tuv
B43	39.966	defghijklmnopqrstu	B64	47.666	uv
B34	40.000	defghijklmnopqrstu	Chlorothalonyl	52.333	v
B2	40.000	defghijklmnopqrstu			
	11 4	1	· · · · · · · · · · · · · · · · · · ·		

NB: LSD $_{0.05}$: values followed by the same letter are not significantly different at 5%.

Table 13. Classification of	the different tr	eatments acco	rding to the values of total	plant weight recorded	at harvesting
Treatments	Total plar	t weight	Treatments	Total plan	nt weight
B63	0.441	a	B24	0.863	cdefghijklmnop
B80	0.452	a	B68	0.865	cdefghijklmnop
B77	0.488	ab	B16	0.871	cdefghijklmnop
B15	0.492	ab	B26	0.871	cdefghijklmnop
B12	0.560	abc	B10	0.884	cdefghijklmnop
B75	0.588	abcd	B41	0.884	cdefghijklmnop
B5	0.619	abcde	B8	0.892	cdefghijklmnop
B61	0.620	abcde	B71	0.894	cdefghijklmnop
B64	0.640	abcdef	B4	0.900	cdefghijklmnop
B76	0.650	abcdefg	B78	0.901	cdefghijklmnop
B65	0.656	abcdefg	B21	0.907	cdefghijklmnop
B79	0.681	abcdefgh	B17	0.911	defghijklmnop
Inoculated control	0.687	abcdefghi	B70	0.925	defghijklmnopq
B46	0.690	abcdeghi	B67	0.928	defghijklmnopq
B34	0.696	abcdefghij	B7	0.930	defghijklmnopq
B66	0.700	abcdefghij	B38	0.942	efghijklmnopq
B69	0.701	abcdefghij	B20	0.948	efghijklmnopqr
Stroby	0.704	abcdefghij	B42	0.956	efghijklmnopqrs
B11	0.706	abcdefghij	B3	0.956	efghijklmnopqrs
B32	0.716	abcdefghij	B82	0.975	fghijklmnopqrs
B13	0.720	abcdefghij	B72	1.000	ghijklmnopqrst
B57	0.734	abcdefghijk	B39	1.016	hijklmnopqrst
B6	0.734	abcdefghijk	B19	1.032	ijklmnopqrstu
B36	0.741	abcdefghijkl	B40	1.042	jklmnopqrstu
B47	0.746	abcdefghijkl	B58	1.071	klmnopqrstu
B60	0.754	abcdefghijklm	B9	1.087	lmnopqrstuv
B62	0.756	abcdefghijklm	B83	1.101	mnopqrstuv
B52	0.762	abcdefghijklmn	B85	1.102	mnopqrstuv
B25	0.765	abcdefghijklm	B73	1.111	nopqrstuvw
B18	0.766	abcdefghijklmn	B28	1.112	nopqrstuvw
B2	0.776	abcdefghijklmno	B43	1.126	opqrstuvwx
B74	0.780	abcdefghijklmno	B50	1.171	pqrstuvwx
B55	0.812	bcdefghijklmno	B84	1.272	qrstuvwx
B30	0.815	bcdefghijklmno	Quadris	1.296	rstuvwx
B22	0.822	bcdefghijklmnop	B54	1.299	stuvwx
B33	0.826	bcdefghijklmnop	B48	1.305	stuvwx
B45	0.828	bcdefghijklmnop	Control	1.339	tuvwx
B1	0.829	bcdefghijklmnop	B44	1.374	uvwx
B59	0.832	bcdefghijklmnop	B49	1.435	vwx
B81	0.851	cdefghijklmnop	Chlorothalonyl	1.458	wx
B14	0.853	cdefghijklmnop	B56	1.466	x
B29	0.857	cdefghijklmnop			
ND. LCD		- 1		20/	

NB: LSD $_{0.05}$: values followed by the same letter are not significantly different at 5%.

Table 14. Classification of the different treatments according to the values of the aboveground part weight/plant recorded at harvesting

harvesting Treatments	Above-ground part weight	Treatments	Above-ground part weight
B63	0.428 a	B16	0.816 efghijklmn
B80	0.439 ^{ab}	B4	0.827 efghijklmn
B15	0.457 ^{abc}	B29	0.834 efghijklmn
B77	0.474 ^{abcd}	B81	0.835 efghijklmn
B12	0.532 abcde	B26	0.837 efghijklmn
B75	0.572 abcdef	B10	0.838 efghijklmn
B5	0.592 abcdefg	B68	0.841 efghijklmn
B61	0.599 abcdefg	B71	0.841 efghijklmn
Inoculated control	0.621 abcdefg	B17	0.853 efghijklmn
B46	0.625 abcdefgh	B41	0.859 efghijklmn
B64	0.634 abcdefgh	B7	0.870 efghijklmno
B76	0.637 abcdefgh	B78	0.871 efghijklmno
B65	0.650 abcdefgh	B8	0.871 efghijklmno
B66	0.653 abcdefgi	B21	0.876 ^{fghijklmno}
B79	0.663 abcdefghi	B3	0.879 ^{fghijklmnop}
B11	0.670 abcdefghij	B38	0.880 ^{fghijklmnop}
B6	0.676 abcdefghij	B39	0.887 ^{fghijklmnopq}
Stroby	0.685 abcdefghij	B70	0.898 ^{fghijklmnopq}
B34	0.687 abcdefghij	B42	0.904 fghijklmnopq
B32	0.688 abcdefghij	B20	0.925 ghijklmnopq
B69	0.688 abcdefghij	B82	0.929 ghijklmnopq
B13	0.707 abcdefghijk	B72	0.929 ghijklmnopq
B25	0.710 abcdefghijk	B19	0.966 hijklmnopgr
B36	0.713 abcdefghijkl	B28	0.991 ^{ijklmnopqr}
B2	0.714 abcdefghijkl	B40	0.992 jklmnopqr
B60	0.715 abcdefghijkl	B9	1.008 ^{jklmnopqr}
B57	0.720 abcdefghijklm	B58	1.032 klmnopqr
B18	0.722 abcdefghijklm	B43	1.054 Imnopqrs
B1	0.726 abcdefghijklm	B73	1.061 mnopqrst
B52	0.733 abcdefghijklm	B50	1.082 nopqrst
B62	0.735 abcdefghijklm	B85	1.082 nopqrst
B47	0.735 abcdefghijklm	B83	1.088 nopqrstu
B45	0.747 abcdefghijklmn	B48	1.201 opqrstu
B74	0.775 bcdefghijklmn	B84	1.219 pqrstu
B22	0.779 bcdefghijkmn	B54	1.225 grstu
B55	0.780 bcdefghijklmn	Quadris	1.228 grstu
B67	0.784 cdefghijklmn	Control	1.275 ^{rstu}
B30	0.795 cdefghijklmn	B44	1.305 rstu
B59	0.795 cdefghijklmn	B49	1.382 stu
B33	0.797 cdefghijklmn	B56	1.401 ^{tu}
B14	0.799 defghijklmn	Chlorothalonyl	1.429 ^u
B24	0.808 defghijklmn		

NB: LSD $_{0.05}$: values followed by the same letter are not significantly different at 5%.

Table 15. Characteristics of the 38 bacteria selected

	Reduction of disease severity (group)	percentage of plant emergence	Plant length before inoculation with <i>A. rabiei</i>		at	Total plant weight	Above-ground part weight
B58						•	•
B28 B71						•	•
B71 B3	1						
B72							
B2	1						
B54	1			•		•	•
B7	1						
B1	1						
	1					_	_
B9 B40	1	•	•			•	•
B40 B41		•	•			•	•
B42		•	•	•			
B22		•	•				
B57		•					
B55		•	•				
B52		•	•				
B19			•	_			•
B21 B18				•			
B10 B56			•	•		•	•
B30 B49			•	•		•	•
B83			-			•	•
B85	2		•			•	•
B43	2					•	•
B50						•	•
B84						•	•
B48			•			•	•
B44 B47						•	•
В47 В73		•	•			•	•
B73 B64				•		•	•
B81			•				
B16	2		•				
B39	3		•				
B82			•				
B8	2		•				

• Characteristic for which the bacterial strain was pre-selected

Re-assessment of antagonistic activity for selected bacteria

Eleven selected bacteria belonging to Group 1 were re-assessed for their efficiency in reducing disease severity under greenhouse and field conditions, on Amdoun1 and Chetoui chickpea cultivars. The efficiency of four bacteria among 11 in reducing disease severity was confirmed (data not shown). Three bacteria, B3, B7 and B71, were able to maintain significantly low levels of infection under greenhouse conditions as well as in the field. B58, found to be relatively efficient under greenhouse conditions, was shown to be significantly efficient in reducing disease severity in the field (Figure 2).

Figure 2. Effect of treatments on chickpea plants inoculated with *A. Rabiei* in the field: A. Inoculated control; B. plants treated with B71; C. plants treated with B58.

In vitro testing performed for representative bacteria revealed that some bacteria may be able to efficiently inhibit *A. rabiei* growth *in vitro* (GI: 22%) (Figure 3) and reduce disease severity whereas others were only efficient *in vitro*.

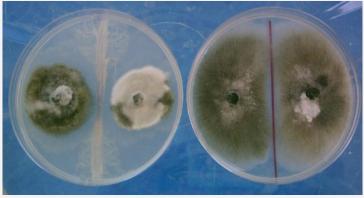


Figure 3. Growth Inhibition zone observed with B7 (left) VS control (right)

4. Conclusion

Eleven bacteria belonging to the genus Bacillus (group 1) were selected among 78 tested strains as they were found to significantly reduce disease severity (MDI:19-25 %) under greenhouse conditions for the susceptible chickpea cultivar Amdoun 1, as compared to the control inoculated with A. rabiei (MDI=45.5 %). Four among these pre-selected bacteria were also able to significantly reduce disease severity under greenhouse conditions for the chickpea cultivar Chetoui and maintain relatively low levels of infection in the field. Treatments with some bacteria of group 2 also resulted in relatively lower MDI values as compared to the inoculated control and significantly improved plant weight as well as fungicides Quadris and Chlorothalonyl. Although plants treated with Quadris and Chlorothalonyl presented better growth features than those treated with Stroby, the latter was the most efficient among the three fungicides in reducing disease severity and behaved like relatively efficient bacteria of group 2. Stroby, which is formulated from kresoxim-methyl derived from the natural antifungal compound Strobulin produced by Strobilurus tenacellus (Anke et al 1977), proved to have an efficient antagonistic effect against many economically important plant pathogens on different crops, especially on apple (Ypema and Gold 1999). As for Azoxystrobin (Quadris in our study), along with many other fungicides is frequently used against Ascochyta rabiei as chickpea growers rely mainly on fungicides with site-specific modes of action to manage ascochyta blight disease. However, fungal plant pathogens that are able to generate variation through sexual recombination and that have a polycyclic disease have an increased risk of developing resistance to fungicides (Wise et al 2008).

Taking into account both disease assessment results and growth parameters under greenhouse conditions, 38 bacteria deserve to be considered. In fact, most of these bacteria were able to reduce disease severity, to allow the development of plants with higher plant weight as compared to control(s), and/or to have an accelerating or increasing effect on plant emergence. Plants treated with some of these strains of *Bacillus sp.*, and particularly one strain of *Bacillus thuringiensis* B42 (55T) showed higher plant length. These bacteria may prove to have a plant-growth-promoting effect and should be further considered. Actually, the use of plant-root colonizing bacteria with plant growth promoting activity has proven during the last decades to be an efficient and environmental-friendly alternative to chemicals and pesticides (Qiao et al 2014). Attempts are being made in order to develop more powerful bio-fertilizer and biocontrol agents from endospore-forming *Bacillus* strains, especially that many formulations prepared from *Bacillus* sp. are increasingly applied due to their efficiency and long shelf life (Qioa et al 2014).

Results of these studies revealed that *Bacillus* species, particularly *B. thuringiensis*, *B. cereus* and *B. sphaericus*, are likely to represent bacterial candidates for biological control of *A. rabiei* and may be involved in further integrated disease management strategies against Ascochyta blight of chickpea. It is also important to notice that *in vitro* testing performed for representative bacteria revealed that *Bacillus* strains that were able to efficiently inhibit *A. rabiei* growth *in vitro* may be more or less efficient in reducing disease severity in the greenhouse and/or in the field and *vice versa*. This is probably due to prevailing conditions and specific control mechanisms involved for each bacterial strain, which should be unraveled and taken into account in selecting any eventual control agents against the disease.

5. References

- Anke T, Oberwinkler F, Steglich W, Schramm (1977) The strobilurins –New Antifungal antibiotics from the Basidiomycete *Strobilurus tenacellus*. J Antibio XXX (10): 806-810
- **Benzohra IE, Bebdahmane BS, Labdi M, Bnekada Y (2011)** *In vitro* Biocontrol using the antagonist *Trichoderma harzianum* against the Algerian isolates of *Ascochyta rabiei* (Pass.) Labr., the Agent of Ascochyta blight in Chickpea (*Cicer arietinum* L.). Int J Microbiol Res 2 (2): 124-128
- **Dugan FM, Hajime A, Lupien SL, Chen W, Chilvers ML, Peever TL (2009)** Ascochyta blight of chickpea reduced 38% by application of *Aureobasidium pullulans* (anamorphic Dothioraceae, Dothideales) to post-harvest debris. Bioc Sc Tech 19 (5): 537-545
- **Dugan FM, Lupien SL, Hernandez-Bello M, Peever TL, Chen W** (2005) Fungi resident in chickpea debris and their suppression of growth and reproduction of *Didymella rabiei* under laboratory conditions. J Phytopathol 153/ 431-439
- Hawtin GC, Singh KB (1984) Prospects and potential of winter sowing of chickpea in the Mediterranean region. In: Saxena MC and Singh KB (eds) Ascochyta blight and winter sowing of chickpeas. Proceedings of a workshop, The Hague, Netherlands, pp 7-16
- Kaiser WJ, Ramsey MD, Makkouk KM, Bretag TW, Acikgog N, Kumar J, Nutter FW (2000) Foliar diseases of cool season food legumesz and their control. In: Knight R (eds) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Acasdemic Publishers, The Netherlands, pp 437-455
- Karimi K, Amini J, Haighi B, Bahramnejad B (2012) Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. Against Fusarium wilt of chickpea. Aus J Cro Protec 6 (4): 695-703
- Khalil S, Iftikhar A, Muzaffer AK (1989) Interactions between *Ascochyta rabiei* (PASS) LAB. Microflora associated with chickpea. Pakistan J Agric Res 10 (3): 263-268
- Küçük Ç, Kivanç M, Kinaci E, Kinaci G (2007) Efficacy of *Trichoderma harzianum* (Rifaii) on inhibition of Ascochyta blight disease of chickpea. Ann Microbiol 57 (4): 665-668
- Patil S, Mallikarjun CB, Ghannappa TS, Subhashchandra MG (2014) Biocontrol activity of siderophore producing *Bacillus subtilis* CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR J Agric Vet Sci (7): 9.1: 63-68
- **Qiao JQ, Wu HJ, Huo R, Gao XW, Boriss R (2014)** Stimulation of plant growth and biocontrol by *Bacillus amyloliquefaciens* subsp. *plantarum* FZB42 engineered for improved action. Chem Biolo Techno Agri 1 (12): 1-14
- Rajakumar E, Aggarwal R, Singh B (2005) Fungal antagonists for biological control of Ascochyta blight of chickpea. Acta Phytopathl entomol Hungaria 40 (1-2): 35-42
- Rhaiem A, Cherif M (2014) Phenology of development of *Didymella rabiei* pseudothecia and modelling of ascospores discharge in Tunisia Eur J Plant Pathol DOI 10.1007/s10658-014-0418-5
- Rhaiem A, Cherif M, Peever TL, Dyer PS (2008) Population structure and mating system of *Ascochyta rabiei* in Tunisia: Evidence for the recent introduction of mating type 2. Plant Pathol 57 (3):540-551
- Rhaiem A, Cherif M, Dyer PS, Peever TL (2007). Distribution of mating types and genetic diversity of *Ascochyta rabiei* populations in Tunisia revealed by mating-type specific PCR and random amplified polymorphic DNA (RAPD) markers. J Phytopathol 155 (10):596-605
- Rhaiem A, Cherif M, Harrabi M, Strange R (2006). First report of *Didymella rabiei* on chickpea debris in Tunisia. Tun J Plant Protec 1, 13–18
- Wise KA, Bradley CA, Pasche JS, Gudmestad NC, Dugan FM, Chen W (2008). Baseline sensitivity of *Ascochyta rabiei* to Azoxystrobin, Pyraclostrobin and Boscalid. Plant Disease 92 (2): 295-300
- Yadav J, Verma JP, Tiwari KN (2011) Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Biol Sci 4 (3): 291-299
- **Ypema HL, Gold RE (1999)** Kresoxim-Methyl: Modification of a naturally occurring compound to produce a new fungicide. Plant Disease 83 (1): 4-19
- Zaim S, Lakhdhar B, Belhacene M (2013) Biocontrol of Chickpea *Fusarium* wilt by *Bacillus* spp. Rhizobacteria. J Plant Protec Res 53 (2): 177-183